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Constructivist theory has been prominent in recent research on mathematics learning and has 

provided a basis for recent mathematics education refom1 efforts . Although constructivism has 

the potential to inform changes in mathematics teaching, it offers no particular vision of how 

mathematics should be taught; models of teaching based on constructivism are needed. Data are 

presented from a whole-class, construc tivis t teaching experiment in which problems of teach-

ing practice required the teacher/researcher to explore the pedagogical implications of his.the-

oretical (constructivis t) perspectives. The analysis of the data led to the development of a model 

of teacher decision making with respect to mathematical rasks. Central to this model is the cre-

ative tension between the teacher's goals with regard to studeot learning and his responsibility 

to be sensitive ttnd res ponsive to the mathematical thinking of the s tudeots . 

Constructivist perspectives on learning have been central to much of recent empir-

ical and theoretical work in mathematics education (Steffe & Gale, 1995; von 

Glasersfeld, 1991) and as a result, have contributed to shaping mathematics reform 

efforts (National Council of Teachers of Mathematics, 1989, 1991). Although con-

structivism has provided mathematics educators with useful ways to understand learn-

ing and learners, the task of reconstructing mathematics pedagogy on the basis of a 

constructivist view of learning is a considerable challenge, one that the mathematics 

education community bas only begun to tackle. Although constructivism provides a 

useful framework for thinking about mathematics learning in classrooms and there-

fore can contribute in important ways to the effort to reform classroom mathematics 

teaching, it does not tell us how to teach mathematics; that is, it does not stipulate a 

particular model. 

The word "pedagogy," as used above, is meant to signify all contributions to the 

mathematical education of students in mathematics classrooms. As such, it includes 

not only the multi-faceted work of the teacher but also the contributions to classroom 

learning of curriculum designers, educational materials developers, and educa-

tional researchers. Mathematics pedagogy might be operationally defmed using the 

following thought experiment. Picrure 25leamers in an otherwise empty classroom. 
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The ingredient necessary in order to initiate mathematics learning is pedagogy. 

This paper describes data from a classroom teaching experiment in which the 

researcher served as mathematics teacher, the analysis of that data, and an emerg-

ing theoretical framework for mathematics pedagogy that derives from the analy-

sis. The paper contributes to a dialogue on what teaching might be like ifir were 

built on a consTructivist view of knowledge development. The specific focus of trus 

paper is on decision making with respect to the mathematics content and mathematical 

tasks for classroom learning. 

This article begins with an articulation of the constructivist perspective that under-

girds the research and teaching and then provides a review of the pedagogical the-

ory development based on constructivism that preceded this study and contributed 

to its theoretical foundation. The study reported here examines the pedagogical deci-

sions that result from the accommodation of the researcher's theoretical perspec-

tives to the problems of teaching. 

A CONSTRUCTIVIST PERSPECTIVE 

The widespread interest in constructivism among mathematics education theorists, 

researchers, and practitioners has led to a plethora of different meanings for "con-

structivism." Although terms such as "radical constructivism" and "social constructivism" 

provide some orientation, there is a diversity of epistemological perspectives even 

within these categories (cf. Steffe & Gale, 1995). Therefore, it seems important to 

describe briefly the constructivist perspective on which our research is based. 

Constructivism derives from a philosophical position that we as human beings 

have no access to an objective reality, that is, a reality independent of our way of 

knowing it. Rather, we construct our knowledge of our world from our perceptions 

and experiences, which are themselves mediated through our previous knowledge. 

Learning is the process by which human beings adapt to their experiential world. 

From a constructivist perspective, we have no way of knowing whether a con-

cept matches an objective reality. Our concern is whether it works (fits with our 

experiential world). Von Glasersfeld ( 1987, 1995) refers to this as "viability," in 

keeping with the biological model of learning as adaptation developed by Piaget 

( 1970). To clarify, a concept works or is viable to the extent that it does what we 

need it to do: to make sense of our perceptions or data, to make an accurate pre-

diction, to solve a problem, or to accomplish a personal goal. Confrey ( 1995) points 

out that a coroUary to the radical constructivist epistemology is its "recursive fidelity-

constructivism is subject to its own claims about the limits of knowledge. Thus, 

[constructivism] is only true to the extent that it is shown useful in allowing us to 

make sense of our experience:' When what we experience differs from the 

expected or intended, disequilibrium results and our adaptive (learning) process 

is triggered. Reflection on successful adaptive operations (reflective abstraction) 

leads to new or modified concepts. 

Perhaps the most divisive issue in recent epistemological debates (Steffe & Gale, 

I 995) is whether knowledge development (particularly relational knowledge) is 
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seen as fundamentally a social process or a cognitive process. The difference in the 

two positions seems to depend on the focus of the observer. The radical constructivist 

position focuses on the individual's construction, thus taking a cognitive or psycho-

logical perspective. AJthougb social interaction is seen as an important context for learn-

ing, the focus is on the resulting reorganization of individual cognition. 

For Piaget, just as for the contemporary radical constructivist, the "others" with whom 

social interaction takes place, are part of the environment, no more but also no less than 
any of the relatively "permanent" objects the child constructs within the range of its lived 
experience. (von Glasersfeld, 1995) 

On the other hand, epistemologists with a sociocultural orientation see higher men-

tal processes as socially determined. "Sociocultural processes are given anal}rtical 

priority when understanding individual mental functioning rather than the other way 

around." (Wertsch & Toma, 1995) From a social perspective, knowledge resides 

in the culture, which is a system that is greater than the sum of its parts. 

Our position eschews either extreme and builds on the theoretical work of Cobb, 

Yackel, and Wood (Cobb, 1989; Cobb, Yackel, & Wood, 1993; Wood, Cobb, & Yaqkel, 

1995) and Bauersfeld ( 1995), whose theories are grounded in both radical con-

structivism (von Glasersfeld, 1991) and symbolic interactionism (Blumer, 1969). Cobb 

(1989) points out that the coordination of the two perspectives is necessary to under-

stand learning in the classroom. The issue is not whether the social or cognitive dimen-

sion is primary, but rather what can be learned from combining analyses from these 

two perspectives. I draw an analogy with physicists' theories of light. Neither a par-

ticle theory nor a wave theory of light is sufficient to characterize the physicist's data. 

However, it has been useful to physicists to consider light to be a particle and to con-

sider light to be a wave. Coordinating the ftndings that derive from each perspective 

has led to advancements in the field. Likewise, it seems useful to coordinate analy-

ses on the basis of psychological (cognitive) and sociological perspectives io order 

to understand knowledge development in classrooms. 

Psychological analysis of mathematics classroom learning focuses on individu-

als' knowledge of and about mathematics'. their understanding of the mathematics 

of the others, and their sense of the functioning of the mathematics class. Sociological 

analysis focuses on taken-as-shared knowledge and classroom social nonns (Cobb, 

Yackel, & Wood, 1989). "Taken-as-shared" (Cobb, Yackel, & Wood, 1992; 

Streeck. 1979) indicates that members of the classroom community, having no direct 

access to each other's understanding, achieve a sense that some aspects of knowl-

edge are shared but have no way of knowing whether the ideas are in fact shared. 

"Social norms" refer to that which is understood by the community as constituting 

effective pruticipation in the mathematics classroom community. The social norms 

'Ball (1991) defines knowledge of mathematics as conceptual and procedural knowledge of the sub-
ject and knowledge abom mathematics as ''understandings about the nature of mathematical knowledge 
and activity: what is entailed in doing mathematics and how truth is establ.ished in the domain. What 
counts as a solution in mathematics? How are solutions justified and conjectures disproved? Which ideas 
are arbitrary or conventional and which are necessary or logical?" (p. 7) 
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include the expectations that community members have of the teacher and students, 

the conceptions of what it means to do mathematics in that community, and the ways 

that mathematical validity is established. 

Tt is useful to see mathematics as both cognitive activity constrained by social and cul-

tural processes, and as a social and cultural phenomenon that is constituted by a com-

munity of actively cognizing individuals (Wood, Cobb, & Yackel, 1995). 

We refer to this coordination of psychological and sociological analyses as 

"social constructivism." 

SOCIAL CONSTRUCTIVISM AND MATHEMATICS PEDAGOGY 

Understanding learning as a process of individual and social constructiOn gives 

teachers a conceptual framework with which to understand the learning of their stu-

dents. Although the development of such understandings is extremely valuable, this 

paper focuses on the question of how constructivism might contribute to a recon-

struction of mathematics pedagogy. How might it inform the development of a frame-

work for fostering and supporting learners' constructions of powerful ideas? 

Wood, Cobb, and Yackel (1995) assert that 

teachers must ... construct a form of practice that fits with their students· way of learn-

ing mathematics. Th.is is the fundamental challenge that faces mathematics teacher edu-

cators. We have to reconstruct what it means to know and do mathematics in school and 

thus what it means to teach mathematics. 

As I stated above, constructivism, as an epistemological theory, does not deftne 

a particular way of teaching. It describes knowledge development whether or not 

there is a teacher present or teaching is going on. Konold ( 1995) argues, "not that 

a teacher's epistemology has no effect on how he or she teaches, rather that its effects 

are neither straightforward nor deterministic." There is no simple function that maps 

teaching methodology onto constructivist principles. A constructivist epistemology 

does not determine the appropriateness or inappropriateness of teaching strategies. 

Bauersfeld ( 1995) states, 

The fundamentally constructive nature of human cognition and the processual emer-

gence of themes, regularities, and norms for mathematizing across social interaction, 

to bring the [psychological] and the social together, make it impossible to end up with 

a simple prescriptive summary for teaching. There is no way towards an operational-

ization of the social constructivist perspective without destroying the perspective. 

The commonJy used misnomer, "constructivist teaching," however. suggests to 

the contrary that constructivism offers one set notion of how to teach. The ques-

tion of whether teaching is "constructivist" is not a useful one and diverts anention 

from the more important question of how effective it is. From a theoretical perspective, 

the question that needs attention is, In what ways can constructivism contribute to 

the development of useful theoretical frameworks for mathematics pedagogy? 

It is overly simplistic and not useful to connect constructivism to teaching with 

the romantic notion, "Leave students alone and they will construct mathematical 
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understandings." Likewise, "Put students in groups and let them communicate as they 

solve problems," is not much more helpful. History provides unsolicited empirical 

evidence with respect to these approaches. Generations of outstanding mathematicians 

who were engaged in mathematical problems, who communicated with their colleagues 

about their work, required thousands of years to develop mathematics that we expect 

our average elementary school students to construct (Richards, 1991). Thus, although 

it is useful to have students work problems and communicate about their ideas, it does 

not seem to be adequate as a prescription for mathematics teaching. The challenge 

is, How can maJhematics teachers foster students' construction ofpoweiful mathematical 

ideas that took the conununity of mathematicians thousands of years to develop? 

Richards asserts, 

It is necessary [for the mathematics teacher] to provide a structure and a set of plans· 
that support the development of informed exploration and reflective inquiry without tak-
ing initiative or control away from the student. The teacher must design tasks and pro-
jects that stimulate students to ask questions, pose problems, and set goals. Students will 
not become active learners by accident, but by design, through the use of the plans that 
we structure to guide exploration and inquiry? (p. 38 [Italics in the original]) 

Through empirical data and model building, this study attempts to examine the 

process of constituting pedagogical designs. 

RECENT THEORETICAL WORK ON PEDAGOGICAL FRAMEWORKS 

Relatively little work in mathematics education has focused on the development 

of theoretical frameworks for mathematics pedagogy consistent with constructivism. 

This seems to be the result of several factors: 

1. It is only recently that empirically based models for studying mathematics learn-

ing in classrooms have been articulated (cf. W ood, Cobb, Yackel, & Dillon, 

1993). Earlier empirical work, which derived from, and contributed to, epistemo-

logical theory, focused on the cognitive development of individual learners (cf. Steffe, 

von Glasersfeld, Richards, & Cobb, 1983). 

2. Traditional views of mathematics, learning, and teaching have been so wide-

spread that researchers studying teachers' thinking, beliefs, and decision making 

have had little access to teachers who had well-developed constructivist perspec-

tives and who understood and were implementing current reform ideas. As a 

result there has been a Jack of connection between research on learning (which has 

focused on constructivism) and research on teaching (which has focused for the most 

part on traditional instruction). 

3. The need for pedagogical frameworks is sometimes obscured by the tendency 

to assume that constructivism defines an approach to teaching. 

21 interpret Richards" s statement, "Students wilJ not become active learners ... " as indicative of his inter-
est in fostering more independent and reflective mathematical investigations and discussions among stu-
dents. From a constructivist perspective. students are always active learners; however, the nature of what 
is constructed in different classroom contexts may vary greatly. 
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Despite these factors, some important work has been done in recent years with 

respect to rethinking mathematics teaching on the basis of a constructivist perspective 

(in some cases without specific reference to constructivism). This work has focused 

on identifying the roles of mathematics teachers and describing the nature of 

"pedagogical deliberations" (Ball, 1993). 

The Professional Standards for School Mathematics (National Council of 

Teachers of Mathematics, 1991 ) envisions teachers' responsibilities in four key areas: 

• Sening goals and selecting or creating mathematical tasks to help students achieve 
these goals: 

• Stimulating and managing classroom discourse so that both the students and 
the teacher are clearer about what is being learned; 

• Creating a classroom envirorunent to support teaching and learning mathematics; 

• Analyzing student learning, the mathematical tasks, and the environment in 
order to make ongoing instructional decisions. (p. 5) 

Cobb, Wood, and Yackel (1993) elaborate the teacher's responsibilities in the 

mathematics classroom. The teacher has the dual role of fostering the development 

of conceptual knowledge among her or his students and of facilitating the constitution 

of shared knowledge in the classroom community. Cobb et al. ( 1993) have 

demonstrated that classroom conversations about mathematics, facilitated by the 

teacher, result in taken-as-shared mathematical knowledge. They have also 

described a second type of conversation that focuses on what constitutes appro-

priate and effective mathematical activity in the classroom. Such discussion con-

tributes to the constitution and modification of social norms for mathematical acti v-

ity, the contrat didactiqueJ (Brousseau, 1981). 

Much of the teacher's responsibilities involve planning. However, the planning 

of instruction based on a constructivist view of learning faces an inherent tension. 

Brousseau emphasizes that students must have freedom to make a response to a sit-

uation on the basis of their past knowledge of the context and their developing math-

ematical understandings. If the situation leads the students to a particular response, 

no real learning of the mathematical ideas underlying that response takes place. However, 

" if the teacher has no intention, no plan, no problem or well-developed s ituation, 

the child will not do and wiJJ not learn anything" (Brousseau, 1987, p. 8-my trans-

lation). Under these conditions, students learn other things, such as how to respond 

appropriately to the teacher's leading questions. 

Brousseau ( 1983). Douady (1985), Lampert ( 1990). and Ball ( 1993) have conducted 

investigations into the nature of pedagogical thinking and decision making that 

contribute to teacher planning. Brousseau ( 1987) asserts that part of the role of the 

teacher is to take the noncontextualized mathematical ideas that are to be taught and 

embed them in a context for student investigation. Such a context should be personally 

meaningful to the students, allowing them to solve problems in that context. the solu-

tion of which might be a specific instantiation of the idea to be learned. (Ball's [1993) 

l-y"he contrat didactique is also established by classroom routines that are not explicitly discussed. 
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notion of"representational context" seems consistent with Brous eau's siruarion.) The 

teacher"s job is to propose a teaming situation within which students seek a response 

to the milieu, not a response that is solely intended to please the teacher. For the prob-

lem to foster the learning of powerfu l mathematical ideas, the students must accept 

the problem as their problem•: they must accept the responsibiHty for truth (Balacheff, 

1990). Brousseau calls this the devolution of the problem. 

The creation of appropriate problem contexts (situations a-didactiques) is not suf-

ficient for learning. Brousseau points out that situations must be created for the decon-

texrualizing and depersonalizing of the ideas (simations didactiques). Learning involves 

being able to use the ideas beyond the narrow context of the original problem sit-

uation. 'The teaching process should allow for this shift of pupils' interest from being 

practitioners to becoming theoreticians'' (Balacheff, 1990, p. 264). 

Also necessary is what the French researchers call "situations for institutional-

ization" (Brousseau, 1987; Douady, 1985), in which ideas constructed or modified 

during problem solving attain the status of knowledge in the classroom community. 

This is consistent with the notion of mathematical knowledge as social knowledge, 

as knowledge that is taken-as-shared by the classroom community. • 

Lampert's (1990) useof"problems" corresponds with Brousseau's situations and 

Ball's representational contexts. Lampert describes the pedagogical thinking in which 

she engages to generate problems for her students. 

At Lhe beginning of a unit, when we were switching to a new topic, Lhe problem we started 
with was chosen for its potential to expose a wide mnge of students' thinking about a 
bit of mathematics, to make explicit and public what they could do and how they under-
stand. Later problems were chosen based on an assessment of the results of the first and 
subsequent discussions of a topic. moving the agenda along into new but related 
mathematical territory. The most important criterion in pick.ing a problem was that it 
be the sort of problem that would have the capacity to engage all of the students in the 
class in mak.ing and testing mathematical hypotheses. These hypotheses are imbedded 
in the answers srudenrs give to the problem, and so comparing answers engaged the class 

in a discussion of the relative mathematical merits of various hypotheses, sening the 
stage for the k.ind of zig-zag between inductive observation and deductive generaliza-
tion that Lakatos and Polya see a characteristic of mathematical activity. (p. 39) 

Such pedagogical thinking must be built on knowledge of mathematic and knowl-

edge of students and how they team mathematics. Ball ( 1993) points out that teach-

ers must have a "bifocal perspective-perceiving the mathematics through the mind 

of the learner while perceiving the mind of the learner through the mathematics" (p.l59). 

Steffe ( 1991) stresses that the teachers' plans must be informed by the "mathematics 

of students.'' 'The most basic responsibility of constructivist teachers is to team the 

mathematical knowledge of their students and how to harmonjze their teaching meth-

ods with the nature of that mathematical knowledge" (Steffe & Wiegel, 1992. p. 17). 

Decisions as to the nature and sequence of the mathematics to be taught are made, 

according to Laborde (1989). on the basi of hypotheses about epistemology 

'Although each problem solver may construct a somewhat different understanding of the problem, nego-
tiation commonly takes place in the classroom to arrive at a raken-as-shared interpretation of the problem. 
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and learning. Ball (1993) further explicates the investigative narure of teaching: "Teaching 

is essentially an ongoing inquiry into content and learners and into ways that contexts 

can be structured to facilitate the development of learners' understandings" (p. 166). 

Ball states that research is needed to further understand the pedagogical delib-

erations in reform-oriented mathematics teaching. Building on the worl< of the researchers 

cited above and starting from a social constructivist perspective on knowledge devel-

opment, my paper continues the discussion of pedagogical deliberations that lead 

to the determination of problem contexts for student involvement. In particular, the 

paper extends the notion of teaching as inquiry, examines the role of different aspects 

of teachers' knowledge, and explores the ongoing and inherent challenge to inte-

grate the teacher's goals and direction for learning with the trajectory of students' 

mathematical thinking and learning. 

THEORY MEETS PRACTICE IN THE CONTEXT 

OF A TEACHING EXPERIMENT 

This section focuses on data from a classroom teaching experiment, in order to 

analyze situations in which a constructivist theoretical perspective came up against 

the realities of real students in a real classroom. The nonroutine problems of 

teaching require an elaboration and modification of theories of learning and teach-

ing. When the researcher/theorist assumes the role of teacher in a research project, 

he is uniquely positioned to study in a direct way the interaction of his theory and 

practice. Particularly, this report focuses on the teacher/researcher's ongoing deci-

sion making with respect to the mathematical content of the course and the tasks 

and questions that provided a context for the study of that content. 'This section begins 

with some brief background on the teaching experiment. 

Background 

The teaching experiment was part of the Construction of Elementary Mathematics 

(CEM) Project, a 3-year study of the mathematical and pedagogical development 

of prospective elementary teachers. The project studied the prospective teachers in 

the context of an experimental teacher preparation program designed to increase their 

mathematical knowledge and to foster their development of views of mathematics, 

learning, and teaching that were consistent with the views espoused in recent 

reform documents (e.g., National Council of Teachers of Mathematics, 1989; 

1991 ). Data collection with 26 prospective elementary teachers (20 of whom fin-

ished the program) proceeded throughout a mathematics course, a course on 

mathematics learning and teaching. a 5-week pre-student-teaching practicum, 

and a 15-week student-teaching practicum. 

The research on the mathematics course and the course on mathematics learning and 

teaching employed a constructivist teaching-experiment methodology, as described 

by Cobb and Steffe (1983) for research with individual subjects. We adapted that method-

ology to research on classroom mathematics (in the manner of Cobb et al., 1993). 

The author taught all classes. Classes were videotaped and field notes were taken 
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by project researchers. Videotapes of classes were transcribed for analysis. The 

author kept a retlective notebook in which he recorded his thinking immediately fol-

lowing teaching and planning sessions. Following each class the author met with a 

second project researcher to discuss what he and his colleague inferred the con-

ceptualizations of the students to be at that point and to plan for the next instructional 

intervention. (In this section, "studems" refers to the prospective elementary teach-

ers participating in the teaching experiment.) These meetings were audiotaped. 

The teaching-experiment methodology involves "hypothesizing what the []earner] 

might learn and finding ways of fostering this learning" (Steffe, 1991 , p. 177). This 

research report represents an extension of the teaching-experiment methodology. Whereas 

the teaching experiment was created to learn about students' developing conceptions 

(our primary emphasis), analysis of the decision making of the teacher/researcher 

in posing problems is potentially a rich source for learning about teaching (Cobb. 

personal communication). This paper is based on such an analysis. 

Class lessons generally consisted of small-group problem solving and teacher-
led whole-class discussions. No lectures were given. The primary mathematical goal 

of the course was for students to learn to identify multiplicative relationships 

(Simon & Blume, 1994a, 1994b ). Previous research on a variety of populations (Hart, 

198 1: lnbelder & Piaget, I 958; Karp Ius, Karplus, Formisano, & Paulson, 1979) and 

our pretest data with this population of students had shown that identifying ratio rela-

tionships tends to be difficult and that additive comparisons are often used where 

multiplicative comparisons (ratios) are more appropriate. The mathematical con-

tent of the course began with exploration of the multiplicative relationship involved 

in evaluating the area of rectangles. 

Data and Analysis 

The data presented focuses on three teaching situations, examining the relationship 

among the teacher's decision making and the classroom activities. These data are 

from the first 5 weeks of the 15-week mathematics course, the duration of the first 

instructional unit. and are taken from class transcripts. the teacher/researcher's notes, 

field notes from other researchers, and student journals. The ftrst unit (eight 90-minute 

classes) focused on understanding the multiplicative relationship involved in eval-

uating the area of a rectangle. The three instructional situations described represent 

the three subtopics of the instructional unit. For each situation, a description is 

provided of the challenge that faced the teacher as construed by the teacher, the 

decision that he made to respond to that challenge, and the subsequent classroom 

interaction that was constituted by the students and teacher. 

Note that fundamental to the teacher's understanding of the challenge was his con-

tructivist perspective, whkh included the idea that students construct their under-

standings, they do not absorb the understandings of their teachers. Each of the three sit-

uations represents an attempt to promote and support powerful constructions. Whereas 

telling students what they should understand (a lecture approach) is relatively straight-

forward, developing situarioiiS a-didactiques or representational contexts is complex 

and uncertain. In this latter approach, mathematics teaching is continually problematic. 
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The rectangles problem. As the instructor, r chose to begin the exploration of mul-

tiplicative relationships in the evaluation of area of rectangles. My purpo e was to 

focus on the multiplicative relationships involved, not to teach about area. The 

lesson I chose was one that I had used several times before with similar groups 

of students. The lesson grew out of my observation that although many prospec-

tive elementary teachers respond to area-of-rectangle problems by multiplying, 

their choice of multiplication is often the result of having learned a procedure or 

formula rather than the result of a solid conceptual link between their understand-

ings of multiplication and their understandings of measuring area. This lesson, which 

was designed to foster the development of that I ink, was planned to be completed 

in one day, although I anticipated that it might continue into the next class. 

The lesson began with a smaU cardboard rectangle being given to each of the smaU 

groups of students seated at the classroom's six rectangular tables. The groups were 

challenged to solve the following problem. 

Rectangles problem 1. Determine how many rectangles, of the size and shape 

of the rectangle that you were given. could fit on the top surface of your table. 

Rectangles cannot be overlapped, cannot be cut, nor can they overlap the edges 

of the table. Be prepared to describe to the class how you solved this problem. 

Each group of students used the given rectangle as a measure to count the num-

ber of rectangles along the length of the table and the number of rectangles along 

the width of the table and then multiplied these two quantities. (For an extensive 

analysis of the quantitative reasoning involved in this instructional unit, see Simon 

& Blume, 1994b.5
) However, a few of the groups raised the question of whether the 

orientation of the rectangle should be maintained for the second measurement (see 

Figure 1 a), or whether it should be rotated 90 degrees so that measuring is always 

done using the same side of the rectangle (see Figure lb). 

I 

Figure Ia. Maintaining orientation of 

the rectangle. 
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Figure lb. Rotating the rectangle to measure 

the adjacent side. 

During whole-class discussion, students described how they had solved the 

problem. Then, to focus discussion on the multiplicative relationships. I asked them 

5Much of the data for this report was reported earlier in Simon and Blume ( 1994b). The earlier arti-

cle focuses on the students' quantitative reasoning. This article revisits some of the data to unpack the 

pedagogical issues. 
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why they had multiplied these numbers. Some responded by saying that "it seemed 

like the easiest way," or "in previous math classes you learned the formula for areas" 

(Simon & Blume, 1994b). Others said it works; the product is the same as the result 

of counting up all the rectangles. I asked whether there was reason to expect that 

it would always work. From my perspective, it is fundamental in mathematics to 

consider whether a claim could be defended that the observed phenomenon would 

always occur under a particular set of conditions. Most of the students seemed per-

plexed by this question. However, Mo lly explained: 

Molly: Well, it would work because, um, multiplying and adding are related, in that mul-
tiplying is, is like adding groups, and so it would always work because you add them 
up to see how many is in the square and to multiply the groups that go like that, that' IJ 

always work. You would get the same number, I'm saying if you added them ()r if 
you multiplied that side times that side. Because you're adding, I mean, you·re mul-
tiplying the number of groups by the number in the groups, which is the same as adding 

them all 

Molly clarified her explanation by demonstrating on the chalkboard how each row 

of rectangles was a group (see Figure 2) and the number of rectangles in a row was 

the number in each group. She showed that summing the rectangles in each row (rePeated 

addition) was equivalent to multiplying the number in a row by the number of rows 

(Simon & Blume, 1994b). 

Figure 2. One group of four rectangles. 

The other students' subsequent comments suggested that only a few of them per-

ceived that Molly's explanation had advanced the discussion in any significant way. 

Situation I. What instructional situation might afford other students the opportunity 

to construct understandings similar to Molly's? Il wasn' t that the other students were 

puzzled by Molly's explanation; they seemed unaffected by it. They continued to 

respond to the question, "Why multiply?" in ways that indicated that the question 

did not demand for them this type of justification. Responses included " ... 'cause that's 

the way we' ve been taught." and·· ... it's a mathematical law." Asking the students 

for explanations and justifications was not sufficient. Our classroom community had 

not established what counts for mathematical justification (Simon & Blume, in press). 

It did not seem that conrinuing this already lengthy discussion would be fruitful. 
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I had engaged them in a problem-solving activity using a hands-on activity and 

fostered communication in small and large groups. Yet only a few of my students 

showed evidence of learning the mathematics that I bad intended them to leam. The 

challenge that I faced was a product of both cognitive and social factors. Cognitively, 

the majority of my students were employing a procedure that was well-practiced 

but not well-examined conceptually. Socially, they did not have a view of math-

ematical activity in general and of appropriate activity for our classroom in panicular 

that included the type of relational thinking and development of justification in which 

I was attempting to engage them. 

I realized that the development of norms for classroom mathematics activity would 

take some time. Such norms would result from the activities in which we engaged 

as a mathematical community and the discussions that we had about that activity. 

Their competence in providing justification would grow as they engaged in discussions 

in which the demand for justification was consistently present (Simon & Blume, 

in press). Thus, from a social perspective, I needed to continue the process that I 

had begun with them. However, this process could not happen in the abstract. Particular 

content and tasks were needed as the context for the constituting of appropriate math-

ematical activity. Thus, I returned to my role of problem poser, but the question was, 

"Which problems?" The traditional approach-assigning practice problems sim-

ilar to the original one-seemed inappropriate. After all, the students were already 

able to generate correct answers; the real problem was understanding why mul-

tiplication was appropriate. I needed to find problems that necessitated an under-

standing of the link between the solution strategy, counting the number of rectangles 

along the length and the width and multiplying those quantities, and the goal of 

determining the total number of rectangles that could be laid out on the table. 

To generate such problems, I made use of conceptual difficulties that I had pre-

viously observed among students working on Rectangles Problem 1. For example: 

Rectangles problem 2. Bill said, "If the table is 13 rectangles long and 9 rec-

tangles wide, and ifi count I, 2, 3 ... , 13 and then again I, 2, 3 ... , 9, and then 

I multiply, 13 x 9, then I have counted the comer rectangle twice." Respond 

to Bill's comment. 

Problem 2 seemed to engage students in making a conceptual link between the 

goal of counting all of the rectangles and the prevalent solution strategy of 

counting rectangles along the two sides and multiplying. The following excerpts 

from the class transcript show the development of these connections. (Note: 

"Simon'' refers to me, the teacher.) 

Karen: When we' re multiplying thirteen times nine we're trying to see ... how many nines 

there are .... So if I'm looking at one nine, two nines, three nines, four nine·, I could 

fmd out how much it would be with those numbers, but if I'm looking for thirteen 

nines,} would want to see how many of tho e I would have if I would add them up 

or if I would multiply them thirteen times. How many- how much would that be if 

I had thirteen nines or nine thirteens? I'm looking for the amount-total amount that 

that would be if I was multiplying how many groups of those or how many sets of 

those would I have, if I would add each one of them up to get the total amount. 



126 Reconstructing Mathematics Pedagogy 

Karen has made some progress in justifying the use of multiplication. However, 

Toni goes back ro how one use the formula appropriately. Her explanation is based 

on her identification of the problem as an area problem and her knowledge of how 

to measure length times width. Once again r attempt to refocus Toni (and,! suspect, 

oLher students) on the underlying conceptual issue. 

Toni: When we're trying to fmd how many rect.angles would fill that rectangle, we're look-

ing for the area And when we find area we multiply length times width, and the columns 
would probably represent the length and the rows would represent the width .... 

Simon: Why does that work, that when we multiply the number of columns times the num-
ber of rows we get the area? 

Molly: Well, r thought again it referred back to when you're using a row to represt!nt the 

uniu. in a group. and the columns to represent the number of groups, and since mul-
tiplication is the same as repeated addition, that when you multiplied the number 
of units in a group by the number of groups, you would get the total number of partS 

in the whole. 

Simon: And how is that connected to this issue about the comer? 

Molly: Because it ... the comer not only represents a one, it's just one numbering of a grpup, 
or it's also numbering a part of that unit-a unit io that group--so it's not, it's two 
different things, just like when they were saying it's a row and a column, well, it's 

two different things. it's a unit and also representing a group. 

Candy: ... It makes it confusing to try to look at the length times the width .... You should 
really treat it as so many sets or so many groups, like nine groups ... , thirteen groups 
of nine. That way, you're not even going to deal with the comer and you won't even 

have that problem. 

Karen: Have we responded to Bill's problem about him thinking that he has double-
counted? 

At this point, Karen brings us back to the original problem. For her, it is not enough 

to decide whether one would be double-counting the comer rectangle; it is also impor-

tant to understand BiiJ's thinking. which led to his confusion. 

Karen: It appears to me that Bill's thinking about ... counting by ones .... one represents two 
different things, but in his mind, at least from what he said, it appears that he only 
sees one as representing one thing, and that is a counting number. He thinks he· s already 
counted it. 

Candy' s and Karen's comments seem to demonstrate an understanding of how 

the counting (vertically and horizontally) and the multiplication are related. I 

push for further verbalization of the ideas involved to ascertain whether others in 

the class have constructed similar meanings. Many now insist that we are really 

counting rows and columns. I suspect that some of the students have latched onto 

the notion of rows and columns in an unexamined way. The shi.ft from counting 

boxes to counting rows and columns does not in itself lead to a connection 

between counting the total number and the multiplicative approach. I refocus my 

questions on this connection. 

Simon: 

Class: 

Simon: 

So I'm not counting boxes at all? 

No. 

OK. Isn't it a little mysterious that we're never counting boxes here and we wind 
up with a number of boxes? Does that bother anybody? We didn't count boxes here. 
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we didn't count boxes there, and we wind up with boxes at the end. Tammy? 

Tammy: If each box represents a portion of the row so we're really counting boxes but we're 

just putting them in a set, instead of individuaUy. 

Simon: OK, so which way are you thinking about the sets going? [Points at diagram on 

the board] This way or that way? Choose one. 

Tammy: VerticaUy? 

Simon: So this is a set? OK. So you are saying this is nine what? 

Tammy: Nine separate units inside of a set. 

Simon: ... OK. So here 1 counted nine boxes in a set and then here I'm counting what? 

Tammy: Thirteen. 

Simon: Thirteen what? 

Tammy: Boxes in a set. 

[Ellen is shaldng her head] 

Simon: Ellen, you don't like that. 

Ellen: If you're going to do it that way, I think you have to say that you're going to take 

the column as a set, nine boxes in one set ... then the thirteen in the row is the num-

ber of sets that you have. so it's not actually boxes, it's the number of that same 

type of set that you have. 

Ellen's final comment evoked many nods of agreement from her classmates. I con-

sidered, however, that for a student to follow an explanation might not require the same 

level of understanding as would be needed to generate an explanation. Still, it 

seemed clear to me from students' verbalizations that the number of students who were 

seeing a connection between multiplication and counting the total number of rectangles 

had increased. Perhaps Problem 2 shifted the discussion from my problem-justifying 

the method that the students believed to be valid-to a community problem-how to 

account for the "double counting." Problem 2 seemed to provide a puzzlement, at least 

initially for most of the students. We cannot assume, however, that aJI of the students 

related to Problem 1 as my problem, nor that all of them owned Problem 2. 

Situation 2. As we proceeded to explore the multiplicative relationship involved 

in evaluating the area of a rectangle, I came to believe that the context in which we 

were working (area) was not well understood by many of the students. They 

seemed to think about area as generated by multiplying length times width. 

Although my primary focus was on multiplicative relationships, not on area, it seemed 

clear that an understanding of area was necessary in order for students to think about 

constituting the quantity (area) and evaluating that quantity. (See Simon & Blume, 

1994b; and Thompson, 1994, for explications of the distinction between constitu-

tion and evaluation of quantities.) What action could I take as a teacher? 

It seemed that, if indeed these students were unclear about what is meant by area, 

the traditional response of "reviewing" the idea would be inadequate. Surely by this 

time, their junior year of college, they had been present at many such reviews and 

had some ideas that could be built on. I chose instead to pose a problem that would 

push them to extend their understanding of area. I posed the following: 
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The blob problem: How can you find the area of this figure? 

Students generated ideas in small groups. When we reconvened as a whole class, 

they shared many ideas. Two methods stimulated a great deal of discussion. The 

first was a suggestion that a string be put along the outline of the blob and then, 

without changing the length of the string, reshape it into a rectangle, a figure whose 

area we know how to determine. This method was based on an assumption, 

eventually rejected by the class, that figures that have the same perimeter also have 

the same area. The second method was to cut out cookie dough of a constant thick-

ness so that it exactly covered the blob. Then, cut the cookie dough into squares 

of a given size. Roll up the re maining dough and roll it out to the original thick-

ness, again cutting out squares, repeating this procedure until there is not enough 

dough remaining to make an additional square. This method was accepted by the 

class as theoretically sound; however, they predicted that in practice it wou ld be 

difficult to carry out acc urately. 

The problem generated more than discussion on the validity of these methods. 

I perceived that the contrast in the methods proposed by the students would enable 

us to consider the issue of conservation of area, that is, under what changes in shape 

the original amount of area is preserved. This was a challenging context for the stu-

dents to think about the meaning of area. Considerable dialogue ensued in which 

students seemed to be using the notion of area appropriately, comparing area 

among different geometric shapes, and distinguishing it from the notion of perime-

ter that was brought up by the string strategy. 

Situation 3. Following a discussion of why multiplication was used to determine 

the total number of rectangles and after our work with the blob problem, I raised 

again the issue that they had brought up in solving the original problem, whether 

to tum the rectangle (Figure I b) or to maintain its orientation (Figure J a). I demon-

trated the former, rotating it 90 degrees to measure the second side (as in Figure 

l b). (The quantitative reasoning brought to bear on this problem is analyzed in depth 

in Simon & Blume, l994b.) 

Most of the students recognized that the method I demonstrated would not 

determine the number of rectangles that could fit on the table. I then asked them whether 

that method tells us anything about this particular table. (This question is referred 
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to as the Turned Rectangle [TR] Problem.) Consensus developed in the class that 

the number generated was meaningless because the method generated a set of 

''overlapping rectangles." 

I was surprised by their response and concerned about what it indicated about their 

understanding of the multiplicative (area) unjt. I had posed this extension to 

encourage an understandjng of the multiplicative relationship between linear mea-

sures of the rectangle and area measures. The measurement strategy in question and 

subsequent computation was identical to what they previously had learned to do with 

a ruler (procedurally). In prior courses, when I posed this question, several students 

understood that the quantity resulting from multiplying the two linear measures rep-

resented the number of square units of area on the table. The square unit had sides 

equal to the length of the rectangle used for measuring. (See Figure 3.) Generally, 

the discussion that ensued led to a consensus with respect to tills point. 

- 1-----i---+--+----+------1 

'-- ._ _ ___. __ _._ __ ...._ _ _.... _ ___. 

Figure 3. Constitution of square units. 

However, unlike my previous experiences, no one in this class seemed to see this 

method as generating square units of sides equal to the length of the rectangle. Rather, 

they were confident in their view that the number generated by this method was non-

sense because it resulted in overlapping rectangles. I tried in different ways to pro-

mote disequilibrium so the students would reconsider the issue. Toward this end, 

I posed the following question: 

Out in the hall I have two [rectangular] tables of different sizes. I used this method ... 

where I measure across one way, turn the rrectangle], measure down the other way, and 

multiply .... When I multipUed using lthisj method, on table A 1 got 32 as my answer 

and [when I measured] table B [using the same rectangle and the same method] , I got 

22. Now what I want to know is, [having used] the method of turning the rectangle, is 

table A bigger. is table B bigger, or don't you have enough information from my method 

to tell? (Simon & Blume, l994b. p. 480) 

The students reasoned that because 32 is greater than 22, table A must be big-

ger than table B. I probed, "32 what and 22 what?" They responded that the 32 and 

22 did not count anything meaningful because tbis method created overlapping rec-

tangles (as in the upper left-hand corner of Figure lb). 

My attempts at creating disequilibrium with my current students, a key part of my 

theory and practice, had been ineffectual. How could I understand the thinking of 
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these srudents, and how could J work with them so that they might develop more pow-

erful understandings? I had never encountered this pedagogical problem before. I 

had always posed the problem (of turning the rectangle) within the whole-class dis-

cussion, and there had always been some srudents who explained about the square 

units to their classmates. I had assumed that the other students understood. 

One advantage of our teaching experiment design was that time was structured 

into the project to reflect, in collaboration with a colleague, on the understandings 

of the srudents. Our reflection led to the following hypotheses (developed more fully 

in Simon & Blume, 1994b). 

As a result of Rectangles Problem I, and because the measurement was still being 

done using the cardboard rectangle, the students anticipated incorrectly that the unit 

of area would be rectangles of the size of the cardboard one. They considered when 

they lay the rectangle along one edge of the table that they were making a row of 

rectangles, a set, an iterable unit. (The discussion of Problems I and 2 had encour-

aged students to think of a row as an iterable unit; Molly's view of a unit of units 

now seemed to be taken-ac;-shared.) When they moved the rectangle down the other 

side, they were counting the number of iterations. This way of viewing the situa-

tion was adequate for the original problems. but inadequate for solving the exten-

sion (TR) problem in which a unit other than the rectangle itself was being created. 

The students were not "seeing" that measuring with the rectangle was a process of 

subdividing the length and width of the table into smaller linear units and that these 

units together implied a rectangular array of units. the size of these units determined 

by the size of the linear units. 

Having constructed hypotheses of the students' thinking, I still needed to gen-

erate an appropriate instructional intervention. I reasoned that if students had mis-

anticipated the unit of area, assuming that the cardboard rectangle was the appro-

priate measure, then providing them with a context that did not invite misanticipation 

might give them the opportunity to determine an appropriate unit of area based on 

linear units. Eventually, they would still need to sort out the problem involving the 

turned rectangle. This thinking Jed me to generate the stick problem followed by 

modification of the original problem turning the rectangle problem. 

The stick problem. Two people work together to measure the size of a rectangular 

region; one measures the length and the other the width. They each use a stick 

to measure with. The sticks, however, are of different lengths. Louisa says, 'The 

length is four of my sticks." Ruiz says, "The width is five of my sticks.·· What 

have they found out about the area of the rectangular region? 

Students worked the stick problem in groups of three. Some of the students were 

able to see how the use of different size sticks could be thought of as determining 

an array of nonsquare rectangles. Toni began the class discussion as time was run-

ning out. Ellen picked up the discussion in the following class. 

Toni: It would pretty much be the same thing as a rectangle because ... the width of the 

rectangle is smaller than the length of the rec1angle. so it doesn' t really matter, ! mean. 

the area ... would be 20 [of these smaU rectangles]. 

Elle11: I didn·t really understand until Tonj drew that diagram on the board, that I found 
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something out about area, and when she put that on the board, I realized that r had 

started thinking that you were starting with the unit, and you had to start with the 

unit to figure out the area. But ... in my mind she sort of went backwards, she ended 

up with a unit of measurement by, urn, making the rectangle . 

. . . Because the unit you're using is a rectangle that bas a length the size of the one 

stick and the width the size of the other stick, so you're sort of going backwards and 

ending up with a unit that means something .... (Simon & Blume, 1994b, p. 489). 

Through the discussion of this problem and an extension question that asked them 

to express the area ofRuiz and Louisa's rectangular area in terms of other units, I 

was persuaded that most of the students understood the relationship between the 

linear measures and the area measures in this context. The next step was to see if 

they could use this understanding to revisit the problem involving turning the rec-

tangle. Would the understandings that they had developed in the stick problem allow 

them to question their assumption of the cardboard rectangle as the appropriate unit 

of measure? The revised TR problem was an attempt to make the problem more con-

crete by having them actually measure out particular rectangular regions using the 

method in question. 

Revised TR problem. I used your [cardboard] rectangle and my method (rotat-

ing the rectangle) to measure two rectangular regions; one was 3 x 4 and the 

other was 5 x 2. Draw these regions (real size). Record aU that you can deter-

mine about their areas. 

Half of the small groups determined that squares were useful units for describ-

ing the areas of the rectangular regions and could explain their thinking. 

Eve: First, when we started drawing it, we drew like all the rectangles, OK? So it 

showed the overlapping up in the comer, but then we thought just take away the over-

lapping ... , and just think of it as a side, like this is a side and this is a side, like the 

sticks that Louisa and Ruiz used, just to get this little edge right here as a stick and 

this little edge right here as a stick, OK? ... So what it actually makes is squares, because 

they're the same length ... you wouldn't talk about your rectangles, 'cause it has no 

relevance. (Simon & Blume, 1994b, p. 490--491) 

Some of the students who had not previously seen the usefulness of square units 

in the revised TR problem did so in the course of the class discussion. However, anum-

ber of students, who saw that measuring in squares worked for the problem, were unclear 

how one would know "when to use rectangles and when to use squares." 

DISCUSSION 

The discussion of the teaching situations is divided into two parts. The first part 

examines the teacher's role that emerges in terms of the decision making about con-

tent and task. This discussion, which focuses on the composite picture of teaching 

seen across the three situations presented, leads to the articulation of a model of teacher 

decision making called the Mathematics Teaching Cycle. The second part of the 

discussion highlights particular aspects of each of tbe situations (considered sep-

arately), in an attempt to further elaborate the role of the teacher. 
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As teacher/researcher. I began the mathematics course with particular theoreti-

cal perspectives on teaching and learning, some of which were articulated earlier 

in this paper. However. not surprisingly, these perspectives did not "tell" me what 

to do as challenges arose. My responses to these challenges often were not the result 

of well-articulated models. Rather, they were emerging patterns of operation in prob-

lem situations. It is only through a posteriori analysis that these patterns have been 

characterized and used to enhance, modify, or develop theory. Thus, the reader should 

keep in mind that the theoretical aspects of this section grew out of the data analy-

sis and were not necessarily part of my explicit thinking as I was planning and teach-

ing. Also. these patterns of operation were established over repeated encounters with 

similar problem situations. 1 had taught essentially this way for many years. This 

particular teaching experience led to further elaboration of my teaching; the teach·-

ing-experiment design led to a new level of analysis of the teaching. 

1n this section, I use the first person singular to refer to my actions and thinking 

as the teacher. I use the third person, often referring to "the teacher" to designate 

ideas that I am lifting from the particular .context in which I was the teacher. Because 

l was the teacher in these epi odes, T use male pronouns in this section when refer-

ring to the teacher generically. 

Unpacking the Teaching Episodes: Developing Theory 

This section analyzes the teacher's role as decision maker as it emerges across 

the three teaching situations. 

The rectangles lesson was shaped by my understanding of the multiplicative rela-

tionship between the area of a rectangle and its linear measures. (The focus on my 

personal knowledge does not discount that this knowledge can be viewed as 

socially constituted and taken-as-shared in the mathematics education community. 

Rather, it is expedient here to focus on my particular interpretation of these 

socially accepted ideas.) My previous experience with prospective elementary teach-

ers led me to hypothesize that my students would not share this knowledge. 

Rather, I expected that their knowledge would be rule bound and that the concepts 

underlying the fommla for the area of a rectangle would be unexplored. The dis-

parity between my understanding, which I judged to be useful, and my sense of their 

understanding defined my learning goal for the first segment. 

Note that hypotheses of students' understandings may be based on information from 

a variety of sources: experience with the students in the conceptual area, experience 

with them in a related area. pretesting, experience with a similar group. and research 

data. Initial hypotheses often lack data that are available as work with the students pro-

ceeds. Thus, the hypotheses are expected to improve (i.e., become more useful). 

Having established my initial goal, that students would understand the relation-

ship of multiplying length by width to the evaluation of the area of a rectangle, I 

considered possible learning activities and the rypes of thinking and learning that 

they might provoke. Following is a partial reconstruction of my thought process. 

I suspect that for many of my students A = I x 111 is a formula that has no conceptual 
roots. Concrete experience with area might be helpfuL I need to keep in mind that they 
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come to the task already knowing the rote formula. A learning situation that does not 

look like their previous experiences with area might preempt their resorting imme-

diately to rote procedures. 

Tiling a rectangular region would provide the concrete experience. If 1 can envision a 

situation in which they form multiple units, sets of tiles, they may see the appropriateness 

of multiplication, in essence "deriving" the formula. I will not mention area but just ask 

them to find out bow many tiles. However, if they are to make connections with l x w, 

they must do more than count each tile. 

lfl give them only one small tile, they will need to look for an efficient way of deter-

mining the number of tiles- which will encourage them to go beyond counting all of 

the tiles. If I use rectangular tiles, they will not be able to measure mindlessly; they will 

need to consider how their measuring relates to the placement of the tiles on the table. 

Measuring with a nonsquare rectangle to determine the area encourages a level of visu-

alization that is not required when one uses a ruler to determine square units, that is, 

they will have to take into account what they are counting, the unit of measure, which 

is based on how they are laying the tiles on the table. 

The preceding thought process provides an example of the reflexive relationship 

between the teacher' s design of activities and consideration of the thinking that stu-

dents might engage in as they participate in those activities. The consideration of 

the learning goal, the learning activities, and the thinking and learning in which stu-

dents might engage make up the hypothetical learning trajectory, a key part of the 

Mathematical Learning Cycle described in the next section. 

Besides the teacher's knowledge of mathematics and his hypotheses about the 

students' understandings, several areas of teacher knowledge come into play, 

including the teacher's theories about mathematics teaching and learning; knowl-

edge of learning with respect to the particular mathematical content (deriving 

from the research literature and/or the teacher' s own experience with learners); and 

knowledge of mathematical representations, materials, and activities. The 

Mathematical Learning Cycle portrays the relationship of these areas of knowledge 

to the design of instruction. 

The only thing that 1s predictable in teaching is that classroom activities will not 

go as predicted. Although the teacher creates an initial goal and plan for instruction, 

it generally must be modified many times (perhaps continually) during the study of 

a particular conceptual area. As students begin to engage in the planned activities, 

the teacher communicates with and observes the students, which leads the teacher 

to new understandings of the students' conceptions. The learning environment 

evolves as a result of interaction among the teacher and students as they engage in 

the mathematical content Steffe (1990) points out, "A particular modification of a math-

ematical concept cannot be caused by a teacher any more than nutriments can cause plants 

to grow" (p. 392). A teacher may pose a task. However, it is what the students make 

of that task and their experience with it that detennines tbe potential for learning. 

Student responses to tbe rectangle problems led me to believe that students did 

not adequately understand what is meant by area. As a result, I generated a new learn-

ing goal, understanding area. This goal temporarily superseded but did not replace 

the original learning goal. Toward this end I posed the blob problem, anticipating 

that the students would brainstorm some ways to fmd area, discuss those ways, and 
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in so doing strengthen their understanding of area. However, the specifics of what 

happened resulted in additional, unanticipated learning. First, students proposed the 

sLring strategy. On the basis of the understanding that I bad developed of the stu-

dents' conceptual ctifficulties in considering the string strategy, and on the basis of 

the interesting contrast that l saw between the string strategy and the dough strat-

egy (as a result of my own mathematical understandings), I revised my goal for instruc-

tion once again. I now saw as the (local) goal facilitating students' understanding 

of conservation of area (not limited to Piaget' s assessment of the concept with chil-

dren). I intended for my students to deal with the question, ' 'Under what types of 

change in shape does the area of a region remain invariant?" 

My interest in their constructing answers to this question was based on three .fac-

tors: (a) I believed that it would further their understanding of area, my motivation 

for posing the blob problem; (b) I saw an opportunity for learning based on the jux-

taposition of the two strategies-an opportunity that I had neither planned for nor 

anticipated; and (c) I believed that the concept of invariance, which Thad thought 

about previously in relation to concepts but not area, was an important 

one. The third factor also points out how my own understanding of the mathematital 

connections involved is enhanced as I attend to the mathematical thinking of my 

students . This evolution of the teacher's mathematical knowledge is also revealed 

in the analysis of the third episode, the data involving measuring with only the long 

side of the rectangle (TR problem). 

My original goal that motivated the rectangles lesson was for my students to under-

stand the evaluation of the area of a rectangle as a multiplicative relationship between 

the linear measures of the sides. For me, as 1 began instruction. such an understanding 

invo lved connecting an understanding of multiplication-as-repeated-addition with 

the notion of identical rows of units of area and understanding the relationship between 

linear units and area units. The latter concept was represented by the issue of turn-

ing the rectangle to measure- ! had not unpacked this understanding further. 

The classroom discussion, however, pushed me to reexamine these understand-

ings and to further elaborate my map of the conceptual terrain. (The use of the term 

"map" in this context is meant to emphasize that the teacher's understandings serve 

as a map as he engages in making sense of students' understandings and identifies 

potential learnings.) The srudents' roisanticipation of the area unit (assumption that 

the area would necessarily be measured in terms of cardboard rectangles) led me 

to explore the importance of anticipating an appropriate unit. Anticipating the area 

unit seemed to involve both an anticipation of the organization of the units, a rec-

tangular array, and an understanding that the linear units define the size and shape 

of the units within that array. (For a fuller discussion, see Simon & Blume, 1994b.) 

The multiplicative relationship, therefore, involved the coordination of the linear units 

to determine an area unit within an anticipated rectangular array. What I had 

observed in my students had changed both my perspective on my students' knowl-

edge and my perspective on the mathematical concepts involved (my internal 

map). This reorganization of my perspectives led to a modification of my goals, my 

plans for learning activities, and the students' learning and thinking that I anticipated. 
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The Mathematics Teaching Cycle 

The analysis of these teaching episodes has led to the development of the 

Mathematics Teaching Cycle (Figure 4) as a schematic model of the cyclical 

interrelationship of aspects of teacher knowledge, thinking, decision making, and 

activity that seems to be demonstrated by the data. 

The three episodes create a picture of a teacher whose teaching is directed by his 

conceptual goals for his students, goals that are constantly being modified. The orig-

inal lesson involving the rectangles on the table was not a random choice, nor was 

it Chapter 1 in someone' s textbook. The goal for and design of the lesson were based 

on relating two factors: the teacher's mathematical understanding and the teacher's 

hypotheses about tbe students' knowledge. I refer to "hypotheses" about students 

knowledge to emphasize tbat the teacher has no direct access to students' knowl-

edge. He must infer the nature of the students' understandings from his interpre-

tations of his students' behaviors, based on his own schemata with respect to 

mathematics, learning. students, and so on. It is implied that the teacher can com-

pare his understanding of a particular concept to his construction of the students' 

understandings, not to the students' "actual" understandings. 

As the teacher, my perception of students' mathematical w1derstandings is struc-

tured by my understandings ofd1e mailiematics in question. Conversely, what I observe 

in the students' mathematical thinking affects my understanding of the mathemat-

ical ideas involved and their interconnections. These two factors are interactive spheres 

of a teacher's thinking (Ball's, 1993, "bifocal perspective" discussed earlier). 

Steffe ( 1990) states, 

Using their own mathematical knowledge, mathematics teachers must interpret the lan-

guage and actions of their students and then make decisions about possible mathematical 

knowledge their students might learn. (p. 395) 

The teacher's learning goal provides a direction for a hypothetical learning 

trajectory.6 I use the term "hypoilieticallearning trajectory" to refer to the teacher's 

prediction as to the path by which learning might proceed. It is hypothetical 

because ilie actual learning trajectory is not knowable in advance. It characterizes an 

expected tendency. Individual students' learning proceeds along idiosyncratic, 

although often similar, paths. This assumes iliat an individual's learning has some reg-

ularity to it (cf. Steffe, et al., J 983, p. 118), that ilie classroom community constrains 

mathematical activity often in predictable ways, and iliat many of the students in ilie 

same class can benefit from the same mathematical task. A hypotbeticallearning tra-

jectory provides ilie teacher with a rationale for choosing a particular instructional design; 

thus, I make my design decisions based on my best guess of how learning might pro-

ceed. This can be seen in the thinking and planning that preceded my instructional inter-

ventions in each of the teaching situations described as well as the spontaneous deci-

sions that 1 made in response to students' thinking. 

61 choose to use "hypotheticul learning trajectory." rather than traditional terminology, to emphasire 
aspects of teacher thinking that are grounded in a constructivist perspective and that are common to both 

advanced planning and spontaneous decision making. 
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The hypothetical learning trajectory is made up of three components: the learn-

ing goal that defines the direction, the learning activities, and the hypothetical learn-

ing process-a prediction of how the students' thinking and understanding will evolve 

in the context of the learning activities. The creation and ongoing modification of 

the hypothetical learning trajectory is the central piece of the model that is diagrammed 

in Figure 4. The notion of a hypothetical learning trajectory is not meant to suggest 

that the teacher always pursues one goal at a time or that only one trajectory is con-

sidered. Rather, it is meant to underscore the importance of having a goal and ratio-

nale for teaching decisions and the hypothetical nature of such thinking. Note that 

the development of a hypothetical learning process and the development of the learn-

ing activities have a symbiotic relationship; the generation of ideas for learning activ-

ities is dependent on the teacher's hypotheses about the development of students' 

thinking and learning; further generation of hypotheses of student conceptual 

development depends on the nature of anticipated activities. 

Teacher's 

knowledge 

Hypothetical 

learning trajectory 

Teacher's plan for 

learning 

activities 

Teacher's 
hypothesis of 

learning process 

Interactive 
constitution 

of classroom 

activities 

Figure 4. Mathematics teaching cycle (abbreviated). 

The choice of the word "trajectory" is meant to refer to a path, the nature of which 

can perhaps be clarified by the following analogy. Consider that you have decided 

to sail around the world in order to visit places that you have never seen. One does 

not do this randomly (e.g., go to France, then Hawaii, then England), but neither is 

there one set itinerary to follow. Rather, you acquire as much knowledge relevant to 

planning your journey as possible. You then make a plan. You may initially plan the 

whole trip or onJy part of it. You set out sailing according to your plan. However, you 

must constantly adjust because of the conditions that you encounter. You continue 
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to acquire knowledge about sailing, about the current conditions, and about the areas 

that you wish to visit. You change your plans with respect to the order of your des-

tinations. You modify the length and nature of your visits as a result of interactions 

with people along the way. You add destinations that prior to your trip were 

unknown to you. The path that you travel is your "trajectory." The path that you 

anticipate at any point in time is your "hypothetical trajectory." 

The generation of a hypothetical learning trajectory prior to classroom instruction 

is the process by which (according to this model) the teacher develops a plan for class-

room activity. However, as the teacher interacts with and observes the students, the 

teacher and students collectively constitute an experience. This experience by the nature 

of its social constitution is different from the one anticipated by the teacher. 

Simultaneous with and in interaction with the social constitution of classroom activ-

ity is a modification in the teacher's ideas and knowledge as he makes sense of what 

is happening and what has happened in the classroom. The diagram in Figure 4 indi-

cates that the assessment of student thinking (which goes on continually in the 

teaching model presented) can bring about adaptations in the teacher's knowledge that, 

in turn, lead to a new or moctified hypothetical learning trajectory. 

Figure 5 describes the relationship among various domains of teacher knowl-

edge, the hypothetical learning trajectory, and the interactions with students. 

Teacher's 

knowledge of 

mathematics 

Teacher's 

knowledge of 

mathematical 

activities and 

representations 

Hypothetical 

learning 

trajectory 

Teacher's 

hypothesis 

of students' 

knowledge 

Teacher's theories 

about mathematics 

learning 
and teaching 

Teacher's 

knowledge of 

student learning 

of particular 

content 

Figure 5. Mathematics teaching cycle. (The domains of teacher knowledge also inform ·'assessment 

of students' knowledge" directl y. However, because this was not the emphasis of the model, and in order 

to s implify the diagram, those arrows are not included,) 
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Beginnjng at the top of the diagram, the teacher's knowledge of mathematics in inter-

action with the teacher's hypotheses about the students' mathematical knowledge 

contribute to the identification of a learning goal. These domains of knowledge, the 

learning goal, and the teacher's knowledge of mathematical activities and representation, 

his knowledge of students' learning of particular content, as weU as the teacher's con-

ceptions of learning and teaching (both within mathematics and in general) contribute 

to the development of learning activities and a hypothetical learning process. 

The modification of the hypothetical learning trajectory is not something that only 

occurs during planning between classes. The teacher is continuaUy engaged in adjust-

ing the learning trajectory that he has hypothesized to bener reflect his enhanced 

knowledge. Sometimes fine tuning is in order, while at other times the whole thrust 

of the lesson must be discarded in favor of a more appropriate one. Regardless of 

the extent of modification, changes may be made at any or all of the three components 

of the hypothetical learning trajectory: the goal, the activities, or the hypothetical 

learning process. 

Other Aspects of the Teacher's Role 

Each of the three teaching situations portrays particular aspects of what teach-

ing. which embodies reform principles. might be like. I discuss a few of these in 

this section. 

The original rectangles problem was planned for one or two class periods; 

instead, eight periods were spent on the mathematics that was generated. Experienced 

teachers might affirm that it is difficult to determine in advance exactly how long 

it will take to teach a particular concept However, the discrepancy between the amount 

of time anticipated and the amount of time spent in this case is well beyond the impre-

cision of planning. This discrepancy points at the experimental nature of mathematics 

teaching. "Experimental" denotes the ongoing cycle of hypothesis generation (or 

moditication) and data collection that characterizes the teaching portrayed. 

In the first situation, involving the tiling of the tables. I, as the teacher. perceived 

a lack of understanding among a majority of the students of the relationship between 

length-times-width and the counting of all the rectangles on the table. My response 

was to pose additional problems based on srudents' conceptual difficulties that I had 

witnessed in the past. r selected thought processes that I thought students could deter-
mine as not viable, but that would likely be problematic initially for them to 

invalidate. (Rectangles problem 2 is an example.) My rationale was that previous 

student 'conceptual difficulties (from the teacher/researcher's perspective) are poten-

tial difficulties for roy current students and represent useful hurdles for them to encounter 

in the development of more powerful ideas. 

This approach represents a sharp contrast to the approach to instruction charac-

teristic of traditional mathematics instruction and represented by mathematics text-

books. Traditional instruction tends to focus on one skill or idea at a time and then 

provide considerable routine practice to "reinforce" that learning. The mathematics 

is subdivided into small segments for instruction so that students can experience suc-

cess on a regular basis. In contrast, Situation L demonstrates a view of learning as 
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one involving a complex network of connections. Learning is likely to be fostered 

by challenging the learner's conceptions using a variety of contexts. The teacher 

can be compared to an athletic coach who employs a variety of practice activities 

that challenge the athletes ' strength and skill, often beyond what is required of the 

athlete in competition (dribbling two basketballs while blindfolded, playing a 

soccer game where each player may not touch the ball two consecutive times, per-

forming a figure skating program three times in a row with only a 2-rninute rest in 

between). These activities are not aimed at constant success, but rather at increased 

competence. Growth is a result of challenge to body and mind. Conceptual diffi-

culties that I have previously observed in students are not to be avoided; rather. they 

provide particular challenges, which if surmounted by the students, result in con-

ceptual growth. This fits with French researchers· notion of "obstacles epistemologiques" 

(Bachelard, 1938, cited in Brousseau, 1983), that overcoming certain obstacles is 

a natural and essential part of conceptual development. These obstac1es are a 

result of prior concepts that, although adaptive in earlier contexts, are maladaptive 

given the demands of the current problem situation. 

A second feature of the approach seen in Situation 1 is subtler. As a teacher, I often 

do not have a well-developed map of the mathematical conceptual area in which 

I am engaging my students; that is, I may not have fuiJy articulated for myself (or 

found in the literature) the specific connections that constitute understanding or the 

nature of development of understanding in that area. Rather, as was the case when 

I started the rectangles instructional unit, my knowledge of what it means to 

understand the particular concept may be carried in part by particular problem sit-

uations. The kinds of difficulties that students encounter provide me with key pieces 

of what it means to understand. Thus, in such cases, my operational definition of 

understanding is the ability to overcome these particular difficulties; I may not 

have unpacked the difficulties in order to understand the conceptual issues that 

are implicated. Thus, even if I do not have a thorough knowledge of what con-

stitutes mathematical understanding in a particular domain, having a rich set of 

problem situations that challenge students and having knowledge of conceptual 

difficulties that they typically encounter provide me with an approximation that lets 

me be reasonably effective in promoting learning in the absence of more elaborated 

knowledge. (This is not to suggest that the more elaborated understanding would not 

be more powerful.) Indeed, engaging students in these problem situations and with 

these conceptual difficulties gives me an opportunity to learn more about what it means 

to understand the concepts involved. 

Underlying Situation 2 is an idea that highlights a difference between teaching 

based on a traditional view of learning and teaching based on a constructivist per-

spective. Rather than "review" what is meant by area or assign "practice problems," 

my approach was to challenge the students in a way that might push them to extend 

their conceptions of area. The review-and-practice approach is based on learning 

as improving storage and retrieval. of received information. (Although l am not negat-

ing the importance of memory, I contend that it is not what is most important, most 

interesting, and most problematic for educators in the domain of mathematics.) My 
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approach in Situation 2 reflected a view of understanding as a network of connected 

ideas that is further elaborated as the understanding is used to solve novel problems. 

Situation 3 was the most difficult to analyze. l brought to the teaching situations 

a view that learning is triggered by disequilibrium. When the students were con-

vinced that the rotated rectangle method of measuring and calculating provided no 

useful information about the table, I !lied in every way I could to provoke disequilibriwn, 

but to no avail. In-depth analysis of the data suggests that my interpretations of the 

students' thinking that led to their conclusion was not adequate. Whereas I had thought 

that they saw my method as counting the number of overlapping rectangles, I now 

beJieve that they were saying that the method involving turning the rectangle 

counted nothing because in the process I was overlapping the rectangles. This sub-

tle difference in thinking may account for my inability to foster disequilibrium. 

Having failed to promote disequilibrium, I embarked intuitively on another strat-

egy. I backed away from the particular problem to try to focus on a part of the under-

standing demanded by the problem. A posteriori analysis suggests that what I was doing 

was fostering the development of that, when the students returned to that 

problem, might contribute to the students' experiencing cognitive conflict In this case, 

if I could help students build an understanding of the relationship between linear and 

area measures of a rectangle, they would then experience a conflict between those under-

standings and the expectation that measuring with the cardboard rectangle resulted 

in a measurement where that rectangle was the unit of area. This teaching episode seems 

to emphasize that disequilibrium is nor created by the teacher. He can try to promote 

disequilibrium. However, the success of such efforts is in part determined by the ade-

quacy of his model of students' understanding. It also seems to support the notion that 

learning does not proceed linearly. Rather, there seem to be multiple sites in one's web 

of understandings on which learning can build. 

IN SUMMARY 

Constructivist views of learning have provided a theoretical foundation for mathe-

matics education research and a framework within which teachers can understand their 

students. However, constructivism also poses a challenge to the mathematics education 

community to develop models of teaching that build on, and are consistent with, this 

theoretical perspective. Small-group interaction, nonroutine problem solving, and manip-

ulative materials can be valuable tools in the hands of mathematics teachers. Yet the 

ability to use these tools is not sufficient to allow teachers to be the architects of pro-

ductive learning situations resulting in conceptual growth. Theoretically based 

frameworks for teaching bave the potential to guide the use of these tools. 

By what means can a teacher help students to develop new, more powerful 

mathematical concepts? Novice teachers. who want their students to "construct" a 

particular idea, often ask for the idea from their students, consciously or unconsciously 

hoping that at least one student will be able to explain it to the others (Simon, 1991 ). 

Such an approach does not deal with a key question: If a group of students do not 

have a particular concept, how does a teacher work with them to foster their devel-

opment of that concept? 
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The principal currencies of the mathematics teacher (iflecturing is rejected as an 

effective means of promoting concept development) are the posing of problems or 

tasks and the encouragement of reflection. The data analysis described in this paper 

and the resulting Mathematics Teaching Cycle address the issue of the process by 

which a teacher can make decisions as to the content, design, and sequence of math-

ematical tasks. The model emphasizes the important interplay between the teacher's 

plans and the teacher and students' collective constitution of classroom activities. 

The former involves creation of instructional goals and hypotheses about how stu-

dents might move towards those goals as a result of their collective engagement in 

particular mathematical tasks. However, the teacher' s goals, hypotheses about learn-

ing, and design of activities change continually as the teacher's own knowledge changes 

as a result of being involved in the culture of the mathematics classroom. 

A goal structure for mathematics education such as the one elaborated by Treffers ( 1987) 

is needed in specifying possible learning environments by teachers. But this element 

of possible learning environments is just as dependent on the experiential fields that con-

stitute learning environments as the latter are dependent on the former. Mathematics 

educators should not take their goals for mathematics education as fixed ideals that stand 

uninfluenced by their teaching experiences. Goal structures that are establjshed prior 

to experience are only starting points and must undergo experiential transformation in 

actual learning and teaching episodes. (Steffe, 1991, p. 192) 

Steffe's comments seem to underscore the cyclical nature of this teaching process. 

The Mathematics Teaching Cycle portrays a view of teacher decision making with 

respect to content and tasks that has been shaped by the meeting of a social con-

structivist perspective with the challenges of the mathematics classroom. Several 

themes are particularly important in the approach to decision making represented 

by this model. 

1. Students' thinking and understanding is taken seriously and given a central place 

in the design and implementation of instruction (consistent with Steffe, 1991). 

Understanding students' thinking is a continual process of data collection and 

hypothesis generation. 

2. The teacher's knowledge evolves simultaneously with the growth in the students' 

knowledge. As the students are learning mathematics, the teacher is learning about 

mathematics, learning, teaching, and about the mathematical thinking of his students. 

3. Planning for instruction is seen as including the generation of a hypothetical 

learning trajectory. This view acknowledges and values the goals of the teacher for 

instruction and the importance of hypotheses about students' learning processes (ideas 

that I hope I have demonstrated are not in confljct with constructivism). 

4. The continually changing knowledge of the teacher (see #2) creates continual 

change in the teacher's hypothetical learning trajectory. 

These last two points address directly the question raised earlier in the paper of 

balance between direction (some may call this "structure") and responsiveness to 

students, a creative tension that shapes mathematics teaching. The model suggests 

that, as mathematics teachers, we strive to be purposeful in our planning and 

actions, yet flexible in our goals and expectations. 
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The mathematics education literature is strong on the importance of Jjstening to 

students and assessing their understanding. However, the emphasis on anticipating 
students' learning processes is not developed by most current descriptions of 

reform in mathematics teaching. Research on how students develop particular math-

ematical knowledge (cf. Steffe, et al., 1983, see pp. 118 & 135; Thompson, 1994) 
informs such anticipation. Perhaps one explanation for the success of Cognitively 

Guided lnstruction (Carpenter, Fennema, Peterson, & Carey, 1988), in which 

teachers learned about research on chlldren' s thinking (Carpenter & Moser, 1983), 
is that it increased reachers' ability to anticipate children's learning processes. Ba!J 

( 1993) articulates a similar position emphasizing the role of teachers • hypotheses 

about student learrung. "Selection of representational contexts involves conjectures 
abom teaching and learning, founded on the evolving insights about the children's 

thinking and [the teacher's] deepening understanding of the mathematics" (p. 166). 

The data from this study must be seen in its particular context The teaching prac-
tice was embedded in a teacher education program; the mathematics students 

were prospective elementary students. As the teacher. I felt no pressure to teach from 

a preset curriculum nor to cover particular mathematical content, a condition that 

is probably the exception rather than the rule for mathematics teachers. Mathematics 
teaching with other populations involves a set of different constraints. Research in other 

contexts wi II inform us about the degree of context dependence of the ideas generated. 

A possible contribution that can be made by the analysis of data and the result-
ing model reported on in this paper is to encourage other researchers to examine 

teachers' "theorems in action" and to make teachers' assumptions, beliefs, and emerg-

ing theories about teaching explicit At the minimum, the paper should serve to empha-

size the need for models of mathematics teaching that are consistent with. and built 

on, emerging theories of learning. Much research remains to be done to understand 

the implications for practice of teachers holding constructivist perspectives. It is the 
recognition that constructivism does not tell us how to teach that will motivate increased 

work in this area. 

A well-developed conception of mathematics teaching is as vital to mathematics 

teacher educators as well-developed conceptions of mathematics are to mathematics 
teachers. Informed decisions in each case are dependent on a clear sense of the 

narure of the content being taught. Considering the Mathematics Teaching Cycle 

as a way to think about mathematics teaching means that teachers would need to 

develop abilities beyond those already currently focused on in mathematics edu-
cation reform, particularly the ability to generate hypotheses about students' 

understandings (which goes beyond soliciting and attending to students· thinking), 

the ability to generate hypothetical Learning trajectories, and the ability to engage 

in conceptual analysis related to the mathematics that they teach. This last point sup-

ports proposed reforms of mathematics for teachers (cf. Cipra, 1992; Committee 
on the Mathematical Education of Teachers, 1991) and supports arguments that the 

mathematical preparation of teachers is far from adequate if teachers are to engage 
in pedagogical deliberations as characterized in this paper. 

FinaJiy. it should be noted that the role of the mathematics teacher as portrayed 

in this paper is a very demanding one. Teachers will need access to relevant 
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research on children's mathematical thinking, innovative curriculum materials, and 

ongoing professional support in order to meet the demands of this role. 
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